The Mechanism of Polyribosome Disaggregation in Brain Tissue by Phenylalanine By FLOYD
نویسنده
چکیده
The injection of neonatal mice with phenylalanine resulted in a rapid decrease in brain polyribosomes and a concomitant increase in monomeric ribosomes. Animals of 1-16 days of age were equally affected by phenylalanine, although the brain polyribosomes of 60-day-old mice were relatively resistant to the effects of phenylalanine. The population of free polyribosomes appeared to be more sensitive to phenylalanine treatment than bound polyribosomes, which were somewhat more resistant to disruption by high concentrations of the amino acid. The effects of phenylalanine were more pronounced with polyribosomes in the cerebral cortex than with those in the cerebellar tissue. The mechanism of polyribosome disruption was shown to be independent of hydrolysis mediated by ribonuclease. Virtually all of the monomeric ribosomes that resulted from phenylalanine treatment were shown to be inactive with regard to endogenous protein synthesis and were present in the cell cytoplasm as vacant couples. These ribosomes were readily dissociated by treatment with 0.5 M-KCI and subsequent ultracentrifugation. These results are discussed in the light of the possibility that high concentrations of phenylalanine disrupt brain protein synthesis by a molecular mechanism that is associated with initiation events.
منابع مشابه
Inhibition of protein synthesis by N-methyl-N-nitrosourea in vivo.
1. The intraperitoneal injection of N-methyl-N-nitrosourea (100mg/kg) caused a partial inhibition of protein synthesis in several organs of the rat, the maximum effect occurring after 2-3h. 2. In the liver the inhibition of protein synthesis was paralleled by a marked disaggregation of polyribosomes and an increase in ribosome monomers and ribosomal subunits. No significant breakdown of polyrib...
متن کاملبررسی اثر متابولیتهای فنیلآلانین بر میزان اتصال هگزوکیناز تیپ I به میتوکندری مغز موش صحرایی
Background & Aim: Hexokinase type I is the most predominant form of the enzyme in brain. It binds reversibly to the outer mitochondria membrane. In normal condition the major part of the enzyme binds to the membrane. Membrane bound form of the enzyme is more active than the soluble form, so this is more a control mechanism of the enzyme activity. Those metabolites that affect the binding or...
متن کاملDosimetry Impact of Boron and Its Carriers Structure at Boron Neutron Capture Therapy of a Brain Tumor; A Sim- ulation Study
Introduction: Boron neutron capture therapy (BNCT) is a method of cancer treatment and potentially, two borono-L-phenylalanine (BPA) and sodium borocaptate (BSH) are used in BNCT as common boron carriers. Some previous studies have shown that the dose rate is directly related to boron concentration in the tissue. This study aimed to simulate the structure of boron carriers and brain tumor compo...
متن کاملDosimetry Impact of Boron and Its Carriers Structure at Boron Neutron Capture Therapy of a Brain Tumor; A Sim- ulation Study
Introduction: Boron neutron capture therapy (BNCT) is a method of cancer treatment and potentially, two borono-L-phenylalanine (BPA) and sodium borocaptate (BSH) are used in BNCT as common boron carriers. Some previous studies have shown that the dose rate is directly related to boron concentration in the tissue. This study aimed to simulate the structure of boron carriers and brain tumor compo...
متن کاملFTIR Determination of Miconazole Effects on Mice Fetus Brain Tissue
Miconazole is an imidazole antifungal agent, commonly applied topically to the skin or mucous membranes. The aim of this study was to examine the alternative method for gaining mechanism or the bimolecular changes caused by the possible teratogenic effects of Miconazole on mice fetus brain tissue using FTIR-Microspectroscopy. The mice were injected with Miconazole (60 mg/Kg) on gestation day 9....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005